Microaerophilic conditions support elevated mixed culture polyhydroxyalkanoate (PHA) yields, but result in decreased PHA production rates
For commercial polyhydroxyalkanoate (PHA) production the objective is to maximise the fraction of feedstock that ends up as polymer, and minimise biomass growth. In this paper, oxygen limitation was applied to achieve this. Intracellular PHA content in mixed cultures in batch systems operated with l...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 65(2012), 2 vom: 01., Seite 243-6 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Industrial Waste Polyhydroxyalkanoates Oxygen S88TT14065 |
Zusammenfassung: | For commercial polyhydroxyalkanoate (PHA) production the objective is to maximise the fraction of feedstock that ends up as polymer, and minimise biomass growth. In this paper, oxygen limitation was applied to achieve this. Intracellular PHA content in mixed cultures in batch systems operated with low and high DO was compared. It is shown that in microaerophilic conditions a higher fraction of substrate is accumulated as PHA in comparison to high DO conditions, evidenced by elevated intracellular PHA content: in the order of 50% higher in the early stages of accumulation. However, the accumulation capacity is not affected by DO. The PHA content in biomass in both the low and high DO systems reached approximately 35%. The time taken for the PHA content in the low DO system to reach capacity was three times longer than in the high DO system |
---|---|
Beschreibung: | Date Completed 10.04.2012 Date Revised 21.11.2013 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2012.086 |