A blur-robust descriptor with applications to face recognition

Understanding the effect of blur is an important problem in unconstrained visual analysis. We address this problem in the context of image-based recognition by a fusion of image-formation models and differential geometric tools. First, we discuss the space spanned by blurred versions of an image and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 6 vom: 14. Juni, Seite 1220-6
1. Verfasser: Gopalan, Raghuraman (VerfasserIn)
Weitere Verfasser: Taheri, Sima, Turaga, Pavan, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM214428869
003 DE-627
005 20231224023553.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2012.15  |2 doi 
028 5 2 |a pubmed24n0715.xml 
035 |a (DE-627)NLM214428869 
035 |a (NLM)22231594 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gopalan, Raghuraman  |e verfasserin  |4 aut 
245 1 2 |a A blur-robust descriptor with applications to face recognition 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.12.2012 
500 |a Date Revised 29.06.2012 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Understanding the effect of blur is an important problem in unconstrained visual analysis. We address this problem in the context of image-based recognition by a fusion of image-formation models and differential geometric tools. First, we discuss the space spanned by blurred versions of an image and then, under certain assumptions, provide a differential geometric analysis of that space. More specifically, we create a subspace resulting from convolution of an image with a complete set of orthonormal basis functions of a prespecified maximum size (that can represent an arbitrary blur kernel within that size), and show that the corresponding subspaces created from a clean image and its blurred versions are equal under the ideal case of zero noise and some assumptions on the properties of blur kernels. We then study the practical utility of this subspace representation for the problem of direct recognition of blurred faces by viewing the subspaces as points on the Grassmann manifold and present methods to perform recognition for cases where the blur is both homogenous and spatially varying. We empirically analyze the effect of noise, as well as the presence of other facial variations between the gallery and probe images, and provide comparisons with existing approaches on standard data sets 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Taheri, Sima  |e verfasserin  |4 aut 
700 1 |a Turaga, Pavan  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 6 vom: 14. Juni, Seite 1220-6  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:6  |g day:14  |g month:06  |g pages:1220-6 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2012.15  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 6  |b 14  |c 06  |h 1220-6