Nanoscale characterization of zein self-assembly
Zein, a major protein of corn, is rich in α-helical structure. It has an amphiphilic character and is capable of self-assembly. Zein can self-assemble into various mesostructures that may find applications in food, agricultural, and biomedical engineering. Understanding the mechanism of zein self-as...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 28(2012), 5 vom: 07. Feb., Seite 2429-35 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. Zein 9010-66-6 |
Zusammenfassung: | Zein, a major protein of corn, is rich in α-helical structure. It has an amphiphilic character and is capable of self-assembly. Zein can self-assemble into various mesostructures that may find applications in food, agricultural, and biomedical engineering. Understanding the mechanism of zein self-assembly at the nanoscale is important for further development of zein structures. In this work, high-resolution transmission electron microscopy (TEM) images revealed nanosize zein stripes, rings, and discs containing a 0.35 nm periodicity, which is characteristic of β-sheet. TEM images were interpreted in terms of the transformation of original α-helices into β-sheet conformation after evaporation-induced self-assembly (EISA). The presence of β-sheet was also detected by circular dichroism (CD) spectroscopy. Zein β-sheets self-assembled into stripes, which curled into rings. Rings formed discs and eventually spheres. The formation of zein nanostructures was believed to be the result of β-sheet orientation, alignment, and packing |
---|---|
Beschreibung: | Date Completed 09.07.2012 Date Revised 07.02.2012 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la204204j |