Correcting for a density distribution : particle size analysis of core-shell nanocomposite particles using disk centrifuge photosedimentometry

Many types of colloidal particles possess a core-shell morphology. In this Article, we show that, if the core and shell densities differ, this morphology leads to an inherent density distribution for particles of finite polydispersity. If the shell is denser than the core, this density distribution...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 5 vom: 07. Feb., Seite 2536-44
1. Verfasser: Fielding, Lee A (VerfasserIn)
Weitere Verfasser: Mykhaylyk, Oleksandr O, Armes, Steven P, Fowler, Patrick W, Mittal, Vikas, Fitzpatrick, Stephen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM214268934
003 DE-627
005 20231224023241.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1021/la204841n  |2 doi 
028 5 2 |a pubmed24n0714.xml 
035 |a (DE-627)NLM214268934 
035 |a (NLM)22214311 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fielding, Lee A  |e verfasserin  |4 aut 
245 1 0 |a Correcting for a density distribution  |b particle size analysis of core-shell nanocomposite particles using disk centrifuge photosedimentometry 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.07.2012 
500 |a Date Revised 07.02.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many types of colloidal particles possess a core-shell morphology. In this Article, we show that, if the core and shell densities differ, this morphology leads to an inherent density distribution for particles of finite polydispersity. If the shell is denser than the core, this density distribution implies an artificial narrowing of the particle size distribution as determined by disk centrifuge photosedimentometry (DCP). In the specific case of polystyrene/silica nanocomposite particles, which consist of a polystyrene core coated with a monolayer shell of silica nanoparticles, we demonstrate that the particle density distribution can be determined by analytical ultracentrifugation and introduce a mathematical method to account for this density distribution by reanalyzing the raw DCP data. Using the mean silica packing density calculated from small-angle X-ray scattering, the real particle density can be calculated for each data point. The corrected DCP particle size distribution is both broader and more consistent with particle size distributions reported for the same polystyrene/silica nanocomposite sample using other sizing techniques, such as electron microscopy, laser light diffraction, and dynamic light scattering. Artifactual narrowing of the size distribution is also likely to occur for many other polymer/inorganic nanocomposite particles comprising a low-density core of variable dimensions coated with a high-density shell of constant thickness, or for core-shell latexes where the shell is continuous rather than particulate in nature 
650 4 |a Journal Article 
700 1 |a Mykhaylyk, Oleksandr O  |e verfasserin  |4 aut 
700 1 |a Armes, Steven P  |e verfasserin  |4 aut 
700 1 |a Fowler, Patrick W  |e verfasserin  |4 aut 
700 1 |a Mittal, Vikas  |e verfasserin  |4 aut 
700 1 |a Fitzpatrick, Stephen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 28(2012), 5 vom: 07. Feb., Seite 2536-44  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:28  |g year:2012  |g number:5  |g day:07  |g month:02  |g pages:2536-44 
856 4 0 |u http://dx.doi.org/10.1021/la204841n  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 28  |j 2012  |e 5  |b 07  |c 02  |h 2536-44