|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM214263509 |
003 |
DE-627 |
005 |
20250213125917.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2012 xx |||||o 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0714.xml
|
035 |
|
|
|a (DE-627)NLM214263509
|
035 |
|
|
|a (NLM)22213763
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Peng, Yigang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a RASL
|b robust alignment by sparse and low-rank decomposition for linearly correlated images
|
264 |
|
1 |
|c 2012
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.04.2013
|
500 |
|
|
|a Date Revised 08.04.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This paper studies the problem of simultaneously aligning a batch of linearly correlated images despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain transformations such that the matrix of transformed images can be decomposed as the sum of a sparse matrix of errors and a low-rank matrix of recovered aligned images. We reduce this extremely challenging optimization problem to a sequence of convex programs that minimize the sum of l1-norm and nuclear norm of the two component matrices, which can be efficiently solved by scalable convex optimization techniques. We verify the efficacy of the proposed robust alignment algorithm with extensive experiments on both controlled and uncontrolled real data, demonstrating higher accuracy and efficiency than existing methods over a wide range of realistic misalignments and corruptions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Ganesh, Arvind
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wright, John
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Wenli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Yi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 34(2012), 11 vom: 05. Nov., Seite 2233-46
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2012
|g number:11
|g day:05
|g month:11
|g pages:2233-46
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2012
|e 11
|b 05
|c 11
|h 2233-46
|