RASL : robust alignment by sparse and low-rank decomposition for linearly correlated images

This paper studies the problem of simultaneously aligning a batch of linearly correlated images despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain transformations such that the matrix of transformed images can be decomposed as the sum of a sparse matrix of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 11 vom: 05. Nov., Seite 2233-46
1. Verfasser: Peng, Yigang (VerfasserIn)
Weitere Verfasser: Ganesh, Arvind, Wright, John, Xu, Wenli, Ma, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM214263509
003 DE-627
005 20250213125917.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0714.xml 
035 |a (DE-627)NLM214263509 
035 |a (NLM)22213763 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng, Yigang  |e verfasserin  |4 aut 
245 1 0 |a RASL  |b robust alignment by sparse and low-rank decomposition for linearly correlated images 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.04.2013 
500 |a Date Revised 08.04.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper studies the problem of simultaneously aligning a batch of linearly correlated images despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain transformations such that the matrix of transformed images can be decomposed as the sum of a sparse matrix of errors and a low-rank matrix of recovered aligned images. We reduce this extremely challenging optimization problem to a sequence of convex programs that minimize the sum of l1-norm and nuclear norm of the two component matrices, which can be efficiently solved by scalable convex optimization techniques. We verify the efficacy of the proposed robust alignment algorithm with extensive experiments on both controlled and uncontrolled real data, demonstrating higher accuracy and efficiency than existing methods over a wide range of realistic misalignments and corruptions 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Ganesh, Arvind  |e verfasserin  |4 aut 
700 1 |a Wright, John  |e verfasserin  |4 aut 
700 1 |a Xu, Wenli  |e verfasserin  |4 aut 
700 1 |a Ma, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 11 vom: 05. Nov., Seite 2233-46  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:11  |g day:05  |g month:11  |g pages:2233-46 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 11  |b 05  |c 11  |h 2233-46