Multiview deblurring for 3-D images from light-sheet-based fluorescence microscopy

We propose an algorithm for 3-D multiview deblurring using spatially variant point spread functions (PSFs). The algorithm is applied to multiview reconstruction of volumetric microscopy images. It includes registration and estimation of the PSFs using irregularly placed point markers (beads). We for...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 4 vom: 31. Apr., Seite 1863-73
Auteur principal: Temerinac-Ott, Maja (Auteur)
Autres auteurs: Ronneberger, Olaf, Ochs, Peter, Driever, Wolfgang, Brox, Thomas, Burkhardt, Hans
Format: Article en ligne
Langue:English
Publié: 2012
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:We propose an algorithm for 3-D multiview deblurring using spatially variant point spread functions (PSFs). The algorithm is applied to multiview reconstruction of volumetric microscopy images. It includes registration and estimation of the PSFs using irregularly placed point markers (beads). We formulate multiview deblurring as an energy minimization problem subject to L1-regularization. Optimization is based on the regularized Lucy-Richardson algorithm, which we extend to deal with our more general model. The model parameters are chosen in a profound way by optimizing them on a realistic training set. We quantitatively and qualitatively compare with existing methods and show that our method provides better signal-to-noise ratio and increases the resolution of the reconstructed images
Description:Date Completed 18.07.2012
Date Revised 22.03.2012
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2011.2181528