Sparse approximation using M-term pursuit and application in image and video coding

This paper introduces a novel algorithm for sparse approximation in redundant dictionaries called the M-term pursuit (MTP). This algorithm decomposes a signal into a linear combination of atoms that are selected in order to represent the main signal components. The MTP algorithm provides an adaptive...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 4 vom: 31. Apr., Seite 1950-62
1. Verfasser: Rahmoune, Adel (VerfasserIn)
Weitere Verfasser: Vandergheynst, Pierre, Frossard, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:This paper introduces a novel algorithm for sparse approximation in redundant dictionaries called the M-term pursuit (MTP). This algorithm decomposes a signal into a linear combination of atoms that are selected in order to represent the main signal components. The MTP algorithm provides an adaptive representation for signals in any complete dictionary. The basic idea behind the MTP is to partition the dictionary into L quasi-disjoint subdictionaries. A k-term signal approximation is then iteratively computed, where each iteration leads to the selection of M ≤ L atoms based on thresholding. The MTP algorithm is shown to achieve competitive performance with the matching pursuit (MP) algorithm that greedily selects atoms one by one. This is due to efficient partitioning of the dictionary. At the same time, the computational complexity is dramatically reduced compared to MP due to the batch selection of atoms. We finally illustrate the performance of MTP in image and video compression applications, where we show that the suboptimal atom selection of MTP is largely compensated by the reduction in complexity compared with MP
Beschreibung:Date Completed 18.07.2012
Date Revised 22.03.2012
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2011.2181525