Online kernel principal component analysis : a reduced-order model

Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the most used data analysis and dimensionality reduction techniques, the principal component analysis. In this paper, we propose an online algorithm for kernel-PCA. To this end, we examine a kernel-based ver...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 9 vom: 01. Sept., Seite 1814-26
1. Verfasser: Honeine, Paul (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM214153576
003 DE-627
005 20231224023020.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0714.xml 
035 |a (DE-627)NLM214153576 
035 |a (NLM)22201059 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Honeine, Paul  |e verfasserin  |4 aut 
245 1 0 |a Online kernel principal component analysis  |b a reduced-order model 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.02.2013 
500 |a Date Revised 01.11.2012 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the most used data analysis and dimensionality reduction techniques, the principal component analysis. In this paper, we propose an online algorithm for kernel-PCA. To this end, we examine a kernel-based version of Oja's rule, initially put forward to extract a linear principal axe. As with most kernel-based machines, the model order equals the number of available observations. To provide an online scheme, we propose to control the model order. We discuss theoretical results, such as an upper bound on the error of approximating the principal functions with the reduced-order model. We derive a recursive algorithm to discover the first principal axis, and extend it to multiple axes. Experimental results demonstrate the effectiveness of the proposed approach, both on synthetic data set and on images of handwritten digits, with comparison to classical kernel-PCA and iterative kernel-PCA 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 9 vom: 01. Sept., Seite 1814-26  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:9  |g day:01  |g month:09  |g pages:1814-26 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 9  |b 01  |c 09  |h 1814-26