Detecting curves with unknown endpoints and arbitrary topology using minimal paths

Existing state-of-the-art minimal path techniques work well to extract simple open curves in images when both endpoints of the curve are given as user input or when one input is given and the total length of the curve is known in advance. Curves which branch require even further prior input from the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 10 vom: 01. Okt., Seite 1952-65
1. Verfasser: Kaul, Vivek (VerfasserIn)
Weitere Verfasser: Yezzi, Anthony, Tsai, Yichang James
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM214153525
003 DE-627
005 20231224023020.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0714.xml 
035 |a (DE-627)NLM214153525 
035 |a (NLM)22201054 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kaul, Vivek  |e verfasserin  |4 aut 
245 1 0 |a Detecting curves with unknown endpoints and arbitrary topology using minimal paths 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.03.2013 
500 |a Date Revised 12.03.2014 
500 |a published: Print 
500 |a ErratumIn: IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):1 
500 |a Citation Status MEDLINE 
520 |a Existing state-of-the-art minimal path techniques work well to extract simple open curves in images when both endpoints of the curve are given as user input or when one input is given and the total length of the curve is known in advance. Curves which branch require even further prior input from the user, namely, each branch endpoint. In this work, we present a novel minimal path-based algorithm which works on much more general curve topologies with far fewer demands on the user for initial input compared to prior minimal path-based algorithms. The two key novelties and benefits of this new approach are that 1) it may be used to detect both open and closed curves, including more complex topologies containing both multiple branch points and multiple closed cycles without requiring a priori knowledge about which of these types is to be extracted, and 2) it requires only a single input point which, in contrast to existing methods, is no longer constrained to be an endpoint of the desired curve but may in fact be ANY point along the desired curve (even an internal point). We perform quantitative evaluation of the algorithm on 48 images (44 pavement crack images, 1 catheter tube image, and 3 retinal images) against human supplied ground truth. The results demonstrate that the algorithm is indeed able to extract curve-like objects accurately from images with far less prior knowledge and less user interaction compared to existing state-of-the-art minimal path-based image processing algorithms. In the future, the algorithm can be applied to other 2D curve-like objects and it can be extended to detect 3D curves 
650 4 |a Journal Article 
700 1 |a Yezzi, Anthony  |e verfasserin  |4 aut 
700 1 |a Tsai, Yichang James  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 10 vom: 01. Okt., Seite 1952-65  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:10  |g day:01  |g month:10  |g pages:1952-65 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 10  |b 01  |c 10  |h 1952-65