Unsupervised learning of categorical segments in image collections

Which one comes first: segmentation or recognition? We propose a unified framework for carrying out the two simultaneously and without supervision. The framework combines a flexible probabilistic model, for representing the shape and appearance of each segment, with the popular “bag of visual words”...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 9 vom: 01. Sept., Seite 1842-55
1. Verfasser: Andreetto, Marco (VerfasserIn)
Weitere Verfasser: Zelnik-Manor, Lihi, Perona, Pietro
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM214153495
003 DE-627
005 20231224023020.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0714.xml 
035 |a (DE-627)NLM214153495 
035 |a (NLM)22201050 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Andreetto, Marco  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised learning of categorical segments in image collections 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.02.2013 
500 |a Date Revised 29.01.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Which one comes first: segmentation or recognition? We propose a unified framework for carrying out the two simultaneously and without supervision. The framework combines a flexible probabilistic model, for representing the shape and appearance of each segment, with the popular “bag of visual words” model for recognition. If applied to a collection of images, our framework can simultaneously discover the segments of each image and the correspondence between such segments, without supervision. Such recurring segments may be thought of as the “parts” of corresponding objects that appear multiple times in the image collection. Thus, the model may be used for learning new categories, detecting/classifying objects, and segmenting images, without using expensive human annotation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Zelnik-Manor, Lihi  |e verfasserin  |4 aut 
700 1 |a Perona, Pietro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 9 vom: 01. Sept., Seite 1842-55  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:9  |g day:01  |g month:09  |g pages:1842-55 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 9  |b 01  |c 09  |h 1842-55