Differential area profiles : decomposition properties and efficient computation

Differential area profiles (DAPs) are point-based multiscale descriptors used in pattern analysis and image segmentation. They are defined through sets of size-based connected morphological filters that constitute a joint area opening top-hat and area closing bottom-hat scale-space of the input imag...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 8 vom: 10. Aug., Seite 1533-48
1. Verfasser: Ouzounis, Georgios K (VerfasserIn)
Weitere Verfasser: Pesaresi, Martino, Soille, Pierre
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM213994488
003 DE-627
005 20231224022710.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0713.xml 
035 |a (DE-627)NLM213994488 
035 |a (NLM)22184259 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ouzounis, Georgios K  |e verfasserin  |4 aut 
245 1 0 |a Differential area profiles  |b decomposition properties and efficient computation 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2012 
500 |a Date Revised 01.10.2012 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Differential area profiles (DAPs) are point-based multiscale descriptors used in pattern analysis and image segmentation. They are defined through sets of size-based connected morphological filters that constitute a joint area opening top-hat and area closing bottom-hat scale-space of the input image. The work presented in this paper explores the properties of this image decomposition through sets of area zones. An area zone defines a single plane of the DAP vector field and contains all the peak components of the input image, whose size is between the zone's attribute extrema. Area zones can be computed efficiently from hierarchical image representation structures, in a way similar to regular attribute filters. Operations on the DAP vector field can then be computed without the need for exporting it first, and an example with the leveling-like convex/concave segmentation scheme is given. This is referred to as the one-pass method and it is demonstrated on the Max-Tree structure. Its computational performance is tested and compared against conventional means for computing differential profiles, relying on iterative application of area openings and closings. Applications making use of the area zone decomposition are demonstrated in problems related to remote sensing and medical image analysis 
650 4 |a Journal Article 
700 1 |a Pesaresi, Martino  |e verfasserin  |4 aut 
700 1 |a Soille, Pierre  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 8 vom: 10. Aug., Seite 1533-48  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:8  |g day:10  |g month:08  |g pages:1533-48 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 8  |b 10  |c 08  |h 1533-48