A closed-form solution to tensor voting : theory and applications

We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 8 vom: 10. Aug., Seite 1482-95
1. Verfasser: Wu, Tai-Pang (VerfasserIn)
Weitere Verfasser: Yeung, Sai-Kit, Jia, Jiaya, Tang, Chi-Keung, Medioni, Gérard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM213994461
003 DE-627
005 20250213121449.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0713.xml 
035 |a (DE-627)NLM213994461 
035 |a (NLM)22184257 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Tai-Pang  |e verfasserin  |4 aut 
245 1 2 |a A closed-form solution to tensor voting  |b theory and applications 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2012 
500 |a Date Revised 23.11.2015 
500 |a published: Print 
500 |a CommentIn: IEEE Trans Pattern Anal Mach Intell. 2014 Dec;36(12):2567-8. doi: 10.1109/TPAMI.2014.2342233. - PMID 26353158 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yeung, Sai-Kit  |e verfasserin  |4 aut 
700 1 |a Jia, Jiaya  |e verfasserin  |4 aut 
700 1 |a Tang, Chi-Keung  |e verfasserin  |4 aut 
700 1 |a Medioni, Gérard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 8 vom: 10. Aug., Seite 1482-95  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:8  |g day:10  |g month:08  |g pages:1482-95 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 8  |b 10  |c 08  |h 1482-95