Maximum Likelihood Estimation of Depth Maps Using Photometric Stereo

Photometric stereo and depth-map estimation provide a way to construct a depth map from images of an object under one viewpoint but with varying illumination directions. While estimating surface normals using the Lambertian model of reflectance is well established, depth-map estimation is an ongoing...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 7 vom: 10. Juli, Seite 1368-80
1. Verfasser: Harrison, Adam P (VerfasserIn)
Weitere Verfasser: Joseph, Dileepan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM213994437
003 DE-627
005 20250213121448.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.249  |2 doi 
028 5 2 |a pubmed25n0713.xml 
035 |a (DE-627)NLM213994437 
035 |a (NLM)22184255 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Harrison, Adam P  |e verfasserin  |4 aut 
245 1 0 |a Maximum Likelihood Estimation of Depth Maps Using Photometric Stereo 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Photometric stereo and depth-map estimation provide a way to construct a depth map from images of an object under one viewpoint but with varying illumination directions. While estimating surface normals using the Lambertian model of reflectance is well established, depth-map estimation is an ongoing field of research and dealing with image noise is an active topic. Using the zero-mean Gaussian model of image noise, this paper introduces a method for maximum likelihood depth-map estimation that accounts for the propagation of noise through all steps of the estimation process. Solving for maximum likelihood depth-map estimates involves an independent sequence of nonlinear regression estimates, one for each pixel, followed by a single large and sparse linear regression estimate. The linear system employs anisotropic weights, which arise naturally and differ in value to related work. The new depth-map estimation method remains efficient and fast, making it practical for realistic image sizes. Experiments using synthetic images demonstrate the method's ability to robustly estimate depth maps under the noise model. Practical benefits of the method on challenging imaging scenarios are illustrated by experiments using the Extended Yale Face Database B and an extensive data set of 500 reflected light microscopy image sequences 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Joseph, Dileepan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 7 vom: 10. Juli, Seite 1368-80  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:7  |g day:10  |g month:07  |g pages:1368-80 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.249  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 7  |b 10  |c 07  |h 1368-80