A sparsity-driven approach for joint SAR imaging and phase error correction

Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 4 vom: Apr., Seite 2075-88
1. Verfasser: Önhon, N Özben (VerfasserIn)
Weitere Verfasser: Cetin, Müjdat
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM213838427
003 DE-627
005 20250213114917.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2179056  |2 doi 
028 5 2 |a pubmed25n0713.xml 
035 |a (DE-627)NLM213838427 
035 |a (NLM)22167627 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Önhon, N Özben  |e verfasserin  |4 aut 
245 1 2 |a A sparsity-driven approach for joint SAR imaging and phase error correction 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2012 
500 |a Date Revised 22.03.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data, which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm, where each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements that it provides over existing techniques for model error compensation in SAR 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cetin, Müjdat  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 4 vom: Apr., Seite 2075-88  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:4  |g month:04  |g pages:2075-88 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2179056  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 4  |c 04  |h 2075-88