Bilinear modeling via augmented Lagrange multipliers (BALM)

This paper presents a unified approach to solve different bilinear factorization problems in computer vision in the presence of missing data in the measurements. The problem is formulated as a constrained optimization where one of the factors must lie on a specific manifold. To achieve this, we intr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 8 vom: 13. Aug., Seite 1496-508
1. Verfasser: Del Bue, Alessio (VerfasserIn)
Weitere Verfasser: Xavier, João, Agapito, Lourdes, Paladini, Marco
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM213729008
003 DE-627
005 20231224022154.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0712.xml 
035 |a (DE-627)NLM213729008 
035 |a (NLM)22156102 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Del Bue, Alessio  |e verfasserin  |4 aut 
245 1 0 |a Bilinear modeling via augmented Lagrange multipliers (BALM) 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2012 
500 |a Date Revised 01.10.2012 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a unified approach to solve different bilinear factorization problems in computer vision in the presence of missing data in the measurements. The problem is formulated as a constrained optimization where one of the factors must lie on a specific manifold. To achieve this, we introduce an equivalent reformulation of the bilinear factorization problem that decouples the core bilinear aspect from the manifold specificity. We then tackle the resulting constrained optimization problem via Augmented Lagrange Multipliers. The strength and the novelty of our approach is that this framework can seamlessly handle different computer vision problems. The algorithm is such that only a projector onto the manifold constraint is needed. We present experiments and results for some popular factorization problems in computer vision such as rigid, non-rigid, and articulated Structure from Motion, photometric stereo, and 2D-3D non-rigid registration 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xavier, João  |e verfasserin  |4 aut 
700 1 |a Agapito, Lourdes  |e verfasserin  |4 aut 
700 1 |a Paladini, Marco  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 8 vom: 13. Aug., Seite 1496-508  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:8  |g day:13  |g month:08  |g pages:1496-508 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 8  |b 13  |c 08  |h 1496-508