IntentSearch : Capturing User Intention for One-Click Internet Image Search

Web-scale image search engines (e.g., Google image search, Bing image search) mostly rely on surrounding text features. It is difficult for them to interpret users' search intention only by query keywords and this leads to ambiguous and noisy search results which are far from satisfactory. It i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 7 vom: 13. Juli, Seite 1342-53
1. Verfasser: Tang, Xiaoou (VerfasserIn)
Weitere Verfasser: Liu, Ke, Cui, Jingyu, Wen, Fang, Wang, Xiaogang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Web-scale image search engines (e.g., Google image search, Bing image search) mostly rely on surrounding text features. It is difficult for them to interpret users' search intention only by query keywords and this leads to ambiguous and noisy search results which are far from satisfactory. It is important to use visual information in order to solve the ambiguity in text-based image retrieval. In this paper, we propose a novel Internet image search approach. It only requires the user to click on one query image with minimum effort and images from a pool retrieved by text-based search are reranked based on both visual and textual content. Our key contribution is to capture the users' search intention from this one-click query image in four steps. 1) The query image is categorized into one of the predefined adaptive weight categories which reflect users' search intention at a coarse level. Inside each category, a specific weight schema is used to combine visual features adaptive to this kind of image to better rerank the text-based search result. 2) Based on the visual content of the query image selected by the user and through image clustering, query keywords are expanded to capture user intention. 3) Expanded keywords are used to enlarge the image pool to contain more relevant images. 4) Expanded keywords are also used to expand the query image to multiple positive visual examples from which new query specific visual and textual similarity metrics are learned to further improve content-based image reranking. All these steps are automatic, without extra effort from the user. This is critically important for any commercial web-based image search engine, where the user interface has to be extremely simple. Besides this key contribution, a set of visual features which are both effective and efficient in Internet image search are designed. Experimental evaluation shows that our approach significantly improves the precision of top-ranked images and also the user experience
Beschreibung:Date Completed 27.11.2015
Date Revised 10.09.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2011.242