Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks

Copyright © 2011 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 51(2012) vom: 01. Feb., Seite 81-9
1. Verfasser: Wang, Shuncai (VerfasserIn)
Weitere Verfasser: Liang, Dong, Li, Chao, Hao, Yonglu, Ma, Fengwang, Shu, Huairui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Comparative Study Journal Article Research Support, Non-U.S. Gov't Antioxidants Water 059QF0KO0R Hydrogen Peroxide BBX060AN9V Ascorbate Peroxidases EC 1.11.1.11 mehr... Catalase EC 1.11.1.6 Superoxide Dismutase EC 1.15.1.1 NADH, NADPH Oxidoreductases EC 1.6.- monodehydroascorbate reductase (NADH) EC 1.6.5.4 Glutathione Reductase EC 1.8.1.7 Glutathione GAN16C9B8O Ascorbic Acid PQ6CK8PD0R
LEADER 01000naa a22002652 4500
001 NLM213700999
003 DE-627
005 20231224022121.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2011.10.014  |2 doi 
028 5 2 |a pubmed24n0712.xml 
035 |a (DE-627)NLM213700999 
035 |a (NLM)22153243 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Shuncai  |e verfasserin  |4 aut 
245 1 0 |a Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.04.2012 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2011 Elsevier Masson SAS. All rights reserved. 
520 |a We compared two apple rootstocks -Malus prunifolia and Malus hupehensis - that differ in their tolerance to this abiotic stress. The former is considered drought-tolerant, the latter, sensitive. We monitored changes in their leaf ultrastructure and responses by their antioxidant defense systems. Irrigation was withheld for 12 d from two-year-old potted plants. Compared with the control, this treatment led to considerable ultrastructural alterations in organelles. Plants of M. prunifolia maintained their structural cell integrity longer than did M. hupehensis. M. hupehensis was more vulnerable to drought than was M. prunifolia, resulting in larger increases in the levels of H(2)O(2), O(2)(-), and MDA from the former. Except for catalase (CAT) and monodehydroascorbate reductase (MDHAR), the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) analyzed here were enhanced to a greater extent in M. prunifolia than in M. hupehensis in response to drought. This was also true for levels of ascorbic acid (AsA) and glutathione (GSH). Under well-watered conditions, changes in lipid peroxidation and relevant antioxidant parameters were not significantly different between the two species throughout the experimental period. These results demonstrate that, in order to minimize oxidative damage, both the activities of antioxidant enzymes and antioxidant concentrations are increased in the leaves of M. prunifolia and M. hupehensis in response to water stress. Moreover, plants of M. prunifolia exhibit higher antioxidant capacity and a stronger protective mechanism, such that their cell structural integrity is better maintained during exposure to drought 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a Ascorbate Peroxidases  |2 NLM 
650 7 |a EC 1.11.1.11  |2 NLM 
650 7 |a Catalase  |2 NLM 
650 7 |a EC 1.11.1.6  |2 NLM 
650 7 |a Superoxide Dismutase  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
650 7 |a NADH, NADPH Oxidoreductases  |2 NLM 
650 7 |a EC 1.6.-  |2 NLM 
650 7 |a monodehydroascorbate reductase (NADH)  |2 NLM 
650 7 |a EC 1.6.5.4  |2 NLM 
650 7 |a Glutathione Reductase  |2 NLM 
650 7 |a EC 1.8.1.7  |2 NLM 
650 7 |a Glutathione  |2 NLM 
650 7 |a GAN16C9B8O  |2 NLM 
650 7 |a Ascorbic Acid  |2 NLM 
650 7 |a PQ6CK8PD0R  |2 NLM 
700 1 |a Liang, Dong  |e verfasserin  |4 aut 
700 1 |a Li, Chao  |e verfasserin  |4 aut 
700 1 |a Hao, Yonglu  |e verfasserin  |4 aut 
700 1 |a Ma, Fengwang  |e verfasserin  |4 aut 
700 1 |a Shu, Huairui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 51(2012) vom: 01. Feb., Seite 81-9  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:51  |g year:2012  |g day:01  |g month:02  |g pages:81-9 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2011.10.014  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2012  |b 01  |c 02  |h 81-9