Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions
We report an experimental study of the dynamical arrest transition for a model system consisting of octadecyl coated silica suspended in n-tetradecane from dilute to concentrated conditions spanning the state diagram. The dispersion's interparticle potential is tuned by temperature affecting th...
Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 28(2012), 3 vom: 24. Jan., Seite 1866-78 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2012
|
Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
Sujets: | Journal Article |
Résumé: | We report an experimental study of the dynamical arrest transition for a model system consisting of octadecyl coated silica suspended in n-tetradecane from dilute to concentrated conditions spanning the state diagram. The dispersion's interparticle potential is tuned by temperature affecting the brush conformation leading to a thermoreversible model system. The critical temperature for dynamical arrest, T*, is determined as a function of dispersion volume fraction by small-amplitude dynamic oscillatory shear rheology. We corroborate this transition temperature by measuring a power-law decay of the autocorrelation function and a loss of ergodicity via fiber-optic quasi-elastic light scattering. The structure at T* is measured using small-angle neutron scattering. The scattering intensity is fit to extract the interparticle pair-potential using the Ornstein-Zernike equation with the Percus-Yevick closure approximation, assuming a square-well interaction potential with a short-range interaction (1% of particle diameter). (1) The strength of attraction is characterized using the Baxter temperature (2) and mapped onto the adhesive hard sphere state diagram. The experiments show a continuous dynamical arrest transition line that follows the predicted dynamical percolation line until ϕ ≈ 0.41 where it subtends the predictions toward the mode coupling theory attractive-driven glass line. An alternative analysis of the phase transition through the reduced second virial coefficient B(2)* shows a change in the functional dependence of B(2)* on particle concentration around ϕ ≈ 0.36. We propose this signifies the location of a gel-to-glass transition. The results presented herein differ from those observed for depletion flocculated dispersion of micrometer-sized particles in polymer solutions, where dynamical arrest is a consequence of multicomponent phase separation, suggesting dynamical arrest is sensitive to the physical mechanism of attraction |
---|---|
Description: | Date Completed 09.07.2012 Date Revised 24.01.2012 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la2035054 |