Face identification using large feature sets

With the goal of matching unknown faces against a gallery of known people, the face identification task has been studied for several decades. There are very accurate techniques to perform face identification in controlled environments, particularly when large numbers of samples are available for eac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 4 vom: 02. Apr., Seite 2245-55
1. Verfasser: Schwartz, William Robson (VerfasserIn)
Weitere Verfasser: Guo, Huimin, Choi, Jonghyun, Davis, Larry S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM213470055
003 DE-627
005 20231224021645.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2176951  |2 doi 
028 5 2 |a pubmed24n0711.xml 
035 |a (DE-627)NLM213470055 
035 |a (NLM)22128005 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schwartz, William Robson  |e verfasserin  |4 aut 
245 1 0 |a Face identification using large feature sets 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2012 
500 |a Date Revised 22.03.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a With the goal of matching unknown faces against a gallery of known people, the face identification task has been studied for several decades. There are very accurate techniques to perform face identification in controlled environments, particularly when large numbers of samples are available for each face. However, face identification under uncontrolled environments or with a lack of training data is still an unsolved problem. We employ a large and rich set of feature descriptors (with more than 70,000 descriptors) for face identification using partial least squares to perform multichannel feature weighting. Then, we extend the method to a tree-based discriminative structure to reduce the time required to evaluate probe samples. The method is evaluated on Facial Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC) data sets. Experiments show that our identification method outperforms current state-of-the-art results, particularly for identifying faces acquired across varying conditions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Guo, Huimin  |e verfasserin  |4 aut 
700 1 |a Choi, Jonghyun  |e verfasserin  |4 aut 
700 1 |a Davis, Larry S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 4 vom: 02. Apr., Seite 2245-55  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:4  |g day:02  |g month:04  |g pages:2245-55 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2176951  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 4  |b 02  |c 04  |h 2245-55