Anionic polyelectrolyte-stabilized nanoparticles via RAFT aqueous dispersion polymerization

We report the synthesis of anionic sterically stabilized diblock copolymer nanoparticles via polymerization-induced self-assembly using a RAFT aqueous dispersion polymerization formulation. The anionic steric stabilizer is a macromolecular chain-transfer agent (macro-CTA) based on poly(potassium 3-s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 28(2012), 1 vom: 10. Jan., Seite 914-22
1. Verfasser: Semsarilar, M (VerfasserIn)
Weitere Verfasser: Ladmiral, V, Blanazs, A, Armes, S P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM213347229
003 DE-627
005 20250213103043.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1021/la203991y  |2 doi 
028 5 2 |a pubmed25n0711.xml 
035 |a (DE-627)NLM213347229 
035 |a (NLM)22115201 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Semsarilar, M  |e verfasserin  |4 aut 
245 1 0 |a Anionic polyelectrolyte-stabilized nanoparticles via RAFT aqueous dispersion polymerization 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.04.2012 
500 |a Date Revised 10.01.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We report the synthesis of anionic sterically stabilized diblock copolymer nanoparticles via polymerization-induced self-assembly using a RAFT aqueous dispersion polymerization formulation. The anionic steric stabilizer is a macromolecular chain-transfer agent (macro-CTA) based on poly(potassium 3-sulfopropyl methacrylate) (PKSPMA), and the hydrophobic core-forming block is based on poly(2-hydroxypropyl methacrylate) (PHPMA). The effect of varying synthesis parameters such as the salt concentration, solids content, relative block composition, and anionic charge density has been studied. In the absence of salt, self-assembly is problematic when using a PKSPMA stabilizer because of lateral repulsion between highly charged anionic chains. However, in the presence of added salt this problem can be overcome by reducing the charge density within the coronal stabilizer layer by either (i) statistically copolymerizing the KSPMA monomer with a nonionic comonomer (2-hydroxyethyl methacrylate, HEMA) or (ii) using a binary mixture of a PKSPMA macro-CTA and a poly(glycerol monomethacrylate) (PGMA) macro-CTA. These diblock copolymer nanoparticles were analyzed by (1)H NMR spectroscopy, gel permeation chromatography (GPC), dynamic light scattering (DLS), transmission electron microscopy (TEM), and aqueous electrophoresis. NMR studies suggest that the HPMA polymerization is complete within 2 h at 70 °C, and DMF GPC analysis confirms that the resulting diblock copolymers have relatively low polydispersities (M(w)/M(n) < 1.30). NMR also suggests a significant degree of hydration for the core-forming PHPMA chains. Depending on the specific reaction conditions, a series of spherical nanoparticles with mean diameters ranging from 50 to 200 nm with tunable anionic surface charge can be prepared. If a binary mixture of anionic and nonionic macro-CTAs is utilized, then it is also possible to access a vesicular morphology 
650 4 |a Journal Article 
700 1 |a Ladmiral, V  |e verfasserin  |4 aut 
700 1 |a Blanazs, A  |e verfasserin  |4 aut 
700 1 |a Armes, S P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 28(2012), 1 vom: 10. Jan., Seite 914-22  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:28  |g year:2012  |g number:1  |g day:10  |g month:01  |g pages:914-22 
856 4 0 |u http://dx.doi.org/10.1021/la203991y  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 28  |j 2012  |e 1  |b 10  |c 01  |h 914-22