Convergence and error estimation in free energy calculations using the weighted histogram analysis method

Copyright © 2011 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 33(2012), 4 vom: 05. Feb., Seite 453-65
1. Verfasser: Zhu, Fangqiang (VerfasserIn)
Weitere Verfasser: Hummer, Gerhard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, N.I.H., Intramural Sodium Channels Sodium 9NEZ333N27
LEADER 01000caa a22002652 4500
001 NLM213287579
003 DE-627
005 20240315232228.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21989  |2 doi 
028 5 2 |a pubmed24n1330.xml 
035 |a (DE-627)NLM213287579 
035 |a (NLM)22109354 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Fangqiang  |e verfasserin  |4 aut 
245 1 0 |a Convergence and error estimation in free energy calculations using the weighted histogram analysis method 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.04.2012 
500 |a Date Revised 15.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2011 Wiley Periodicals, Inc. 
520 |a The weighted histogram analysis method (WHAM) has become the standard technique for the analysis of umbrella sampling simulations. In this article, we address the challenges (1) of obtaining fast and accurate solutions of the coupled nonlinear WHAM equations, (2) of quantifying the statistical errors of the resulting free energies, (3) of diagnosing possible systematic errors, and (4) of optimally allocating of the computational resources. Traditionally, the WHAM equations are solved by a fixed-point direct iteration method, despite poor convergence and possible numerical inaccuracies in the solutions. Here, we instead solve the mathematically equivalent problem of maximizing a target likelihood function, by using superlinear numerical optimization algorithms with a significantly faster convergence rate. To estimate the statistical errors in one-dimensional free energy profiles obtained from WHAM, we note that for densely spaced umbrella windows with harmonic biasing potentials, the WHAM free energy profile can be approximated by a coarse-grained free energy obtained by integrating the mean restraining forces. The statistical errors of the coarse-grained free energies can be estimated straightforwardly and then used for the WHAM results. A generalization to multidimensional WHAM is described. We also propose two simple statistical criteria to test the consistency between the histograms of adjacent umbrella windows, which help identify inadequate sampling and hysteresis in the degrees of freedom orthogonal to the reaction coordinate. Together, the estimates of the statistical errors and the diagnostics of inconsistencies in the potentials of mean force provide a basis for the efficient allocation of computational resources in free energy simulations 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Intramural 
650 7 |a Sodium Channels  |2 NLM 
650 7 |a Sodium  |2 NLM 
650 7 |a 9NEZ333N27  |2 NLM 
700 1 |a Hummer, Gerhard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 33(2012), 4 vom: 05. Feb., Seite 453-65  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:33  |g year:2012  |g number:4  |g day:05  |g month:02  |g pages:453-65 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21989  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2012  |e 4  |b 05  |c 02  |h 453-65