Synthesis, rapid responsive thickening, and self-assembly of brush copolymer poly(ethylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate) in aqueous solutions
Double hydrophilic brush copolymer poly(ethylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate) (PEO-g-PDMAEMA) was successfully prepared via atom transfer radical polymerization (ATRP). We investigated the pH/thermoresponsive behaviors of PEO-g-PDMAEMA brush-shaped copolymer concentrated aq...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 1 vom: 10. Jan., Seite 153-60 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Double hydrophilic brush copolymer poly(ethylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate) (PEO-g-PDMAEMA) was successfully prepared via atom transfer radical polymerization (ATRP). We investigated the pH/thermoresponsive behaviors of PEO-g-PDMAEMA brush-shaped copolymer concentrated aqueous solutions by rheology. The observed LCST strongly decreased with increasing pH of the solutions, which was lower than that of linear block copolymer for different pH, indicating rapid thermoresponsiveness of the brush PDMAEMA chains. An unexpected shear thickening behavior was observed and could be tuned by the pH, resulting from the mobile nature and tractive force of the densely grafted hydrophobic chains of PDMAEMA at high pH. Self-assembly of the brush copolymer in a different pH and ionic strength environment was studied by transmission electron microscopy. A wormlike cylinder structure was formed at low pH. Fractals were observed for the brush copolymer aqueous solution in the presence of NaCl. The results showed that by adjusting the pH and NaCl concentration of the dispersions fractal aggregates with different topology were obtained. The observations reported here can supply a better understanding of the molecular self-assembling nature and be used to develop responsive materials with better performance |
---|---|
Beschreibung: | Date Completed 25.04.2012 Date Revised 10.01.2012 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la2031472 |