Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach

In this paper, a new method for supervised hyperspectral data classification is proposed. In particular, the notion of stochastic minimum spanning forest (MSF) is introduced. For a given hyperspectral image, a pixelwise classification is first performed. From this classification map, M marker maps...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 4 vom: 07. Apr., Seite 2008-21
1. Verfasser: Bernard, Kévin (VerfasserIn)
Weitere Verfasser: Tarabalka, Yuliya, Angulo, Jesús, Chanussot, Jocelyn, Benediktsson, Jón Atli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM213067846
003 DE-627
005 20231224020831.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2175741  |2 doi 
028 5 2 |a pubmed24n0710.xml 
035 |a (DE-627)NLM213067846 
035 |a (NLM)22086502 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bernard, Kévin  |e verfasserin  |4 aut 
245 1 0 |a Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2012 
500 |a Date Revised 22.03.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, a new method for supervised hyperspectral data classification is proposed. In particular, the notion of stochastic minimum spanning forest (MSF) is introduced. For a given hyperspectral image, a pixelwise classification is first performed. From this classification map, M marker maps are generated by randomly selecting pixels and labeling them as markers for the construction of MSFs. The next step consists in building an MSF from each of the M marker maps. Finally, all the M realizations are aggregated with a maximum vote decision rule in order to build the final classification map. The proposed method is tested on three different data sets of hyperspectral airborne images with different resolutions and contexts. The influences of the number of markers and of the number of realizations M on the results are investigated in experiments. The performance of the proposed method is compared to several classification techniques (both pixelwise and spectral-spatial) using standard quantitative criteria and visual qualitative evaluation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tarabalka, Yuliya  |e verfasserin  |4 aut 
700 1 |a Angulo, Jesús  |e verfasserin  |4 aut 
700 1 |a Chanussot, Jocelyn  |e verfasserin  |4 aut 
700 1 |a Benediktsson, Jón Atli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 4 vom: 07. Apr., Seite 2008-21  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:4  |g day:07  |g month:04  |g pages:2008-21 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2175741  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 4  |b 07  |c 04  |h 2008-21