80-MHz intravascular ultrasound transducer using PMN-PT free-standing film

[Pb(Mg(1/3)Nb(2/3))O(3)](0.63)[PbTiO(3)](0.37) (PMN-PT) free-standing film of comparable piezoelectric properties to bulk material with thickness of 30 μm has been fabricated using a modified precursor coating approach. At 1 kHz, the dielectric permittivity and loss were 4364 and 0.033, respectively...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 58(2011), 11 vom: 13. Nov., Seite 2281-8
1. Verfasser: Li, Xiang (VerfasserIn)
Weitere Verfasser: Wu, Wei, Chung, Youngsoo, Shih, Wan Y, Shih, Wei-Heng, Zhou, Qifa, Shung, K Kirk
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Membranes, Artificial
Beschreibung
Zusammenfassung:[Pb(Mg(1/3)Nb(2/3))O(3)](0.63)[PbTiO(3)](0.37) (PMN-PT) free-standing film of comparable piezoelectric properties to bulk material with thickness of 30 μm has been fabricated using a modified precursor coating approach. At 1 kHz, the dielectric permittivity and loss were 4364 and 0.033, respectively. The remnant polarization and coercive field were 28 μC/cm(2) and 18.43 kV/cm. The electromechanical coupling coefficient k(t) was measured to be 0.55, which was close to that of bulk PMN-PT single-crystal material. Based on this film, high-frequency (82 MHz) miniature ultrasonic transducers were fabricated with 65% bandwidth and 23 dB insertion loss. Axial and lateral resolutions were determined to be as high as 35 and 176 μm. In vitro intravascular imaging on healthy rabbit aorta was performed using the thin film transducers. In comparison with a 35-MHz IVUS transducer, the 80-MHz transducer showed superior resolution and contrast with satisfactory penetration depth. The imaging results suggest that PMN-PT free-standing thin film technology is a feasible and efficient way to fabricate very-high-frequency ultrasonic transducers
Beschreibung:Date Completed 28.03.2012
Date Revised 21.10.2021
published: Print
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2011.2085