Azide functional monolayers grafted to a germanium surface : model substrates for ATR-IR studies of interfacial click reactions

High-quality azide-functional substrates are prepared by a low temperature reaction of 11-bromoundecyltrichlorosilane with UV-ozone-treated germanium ATR-IR plates followed by nucleophilic substitution of the terminal bromine by addition of sodium azide. The resulting monolayer films are characteriz...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 1 vom: 10. Jan., Seite 486-93
1. Verfasser: Zhang, Shuo (VerfasserIn)
Weitere Verfasser: Koberstein, Jeffrey T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:High-quality azide-functional substrates are prepared by a low temperature reaction of 11-bromoundecyltrichlorosilane with UV-ozone-treated germanium ATR-IR plates followed by nucleophilic substitution of the terminal bromine by addition of sodium azide. The resulting monolayer films are characterized by atomic force microscopy (AFM), contact angle analysis, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance infrared spectroscopy (ATR-IR), and ellipsometry. XPS and ellipsometric thickness data correspond well to the results of molecular model calculations confirming the formation of a densely packed azide-functional monolayer. These azide-functional substrates enable interfacial "click" reactions with complementary alkyne-functional molecules to be studied in situ by ATR-IR. To illustrate their potential utility for kinetic studies we show that, in the presence of copper(I) catalyst, the azide-modified surfaces react rapidly and quantitatively with 5-chloro-pentyne to form triazoles via a 1,3-dipolar cycloaddition reaction. Time-resolved ATR-IR measurements indicate that the interfacial click reaction is initially first order in azide concentration as expected from the reaction mechanism, with a rate constant of 0.034 min(-1), and then transitions to apparent second order dependence, with a rate constant of 0.017 min(-1)/(chains/nm(2)), when the surface azide and triazole concentrations become similar, as predicted by Oyama et al. The reaction achieves an ultimate conversion of 50% consistent with the limit expected due to steric hindrance of the 5-chloro-pentyne reactant at the surface
Beschreibung:Date Completed 25.04.2012
Date Revised 10.01.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la203844v