On the role of β-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings

A study was conducted to investigate the contribution of β-cyanoalanine synthase (CAS) to the botanical metabolism of free cyanide and iron cyanides. Seedlings of rice (Oryza sativa L. cv. XZX 45) were grown hydroponically and then amended with free cyanide (KCN) or ferri-cyanide [K(3)Fe(CN)(6)] int...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 21(2012), 2 vom: 14. März, Seite 548-56
1. Verfasser: Yu, Xiao-Zhang (VerfasserIn)
Weitere Verfasser: Lu, Peng-Cheng, Yu, Zhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Cyanides Ferricyanides Lyases EC 4.- beta-cyanoalanine synthase EC 4.4.1.9 Potassium Cyanide MQD255M2ZO mehr... potassium ferricyanide U4MAF9C813
Beschreibung
Zusammenfassung:A study was conducted to investigate the contribution of β-cyanoalanine synthase (CAS) to the botanical metabolism of free cyanide and iron cyanides. Seedlings of rice (Oryza sativa L. cv. XZX 45) were grown hydroponically and then amended with free cyanide (KCN) or ferri-cyanide [K(3)Fe(CN)(6)] into the growth media. Total cyanide, free cyanide, and Fe(3+)/Fe(2+) in aqueous solution were analyzed to identify the speciation of K(3)Fe(CN)(6). Activity of CAS in different parts of the rice seedlings was also assayed in vivo and results indicated that dissociation of K(3)Fe(CN)(6) to free cyanide in solution was negligible. Almost all of the applied KCN was removed by rice seedlings and the metabolic rates were concentration dependent. Phyto-transport of K(3)Fe(CN)(6) was apparent, but appreciable amounts of cyanide were recovered in plant tissues. The metabolic rates of K(3)Fe(CN)(6) were also positively correlated to the concentrations supplied. Rice seedlings exposed to KCN showed a considerable increase in the CAS activity and roots had higher CAS activity than shoots, indicating that CAS plays an important role in the botanical assimilation of KCN. However, no measurable change of CAS activity in different parts of rice seedlings exposed to K(3)Fe(CN)(6) was detected, suggesting that K(3)Fe(CN)(6) is likely metabolized by rice directly through an unknown pathway rather than the β-cyanoalanine pathway
Beschreibung:Date Completed 31.05.2012
Date Revised 21.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-011-0815-x