Latent log-linear models for handwritten digit classification

We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 6 vom: 01. Juni, Seite 1105-17
1. Verfasser: Deselaers, Thomas (VerfasserIn)
Weitere Verfasser: Gass, Tobias, Heigold, Georg, Ney, Hermann
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM212860550
003 DE-627
005 20250213091620.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.218  |2 doi 
028 5 2 |a pubmed25n0709.xml 
035 |a (DE-627)NLM212860550 
035 |a (NLM)22064798 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Deselaers, Thomas  |e verfasserin  |4 aut 
245 1 0 |a Latent log-linear models for handwritten digit classification 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.12.2012 
500 |a Date Revised 29.06.2012 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature 
650 4 |a Journal Article 
700 1 |a Gass, Tobias  |e verfasserin  |4 aut 
700 1 |a Heigold, Georg  |e verfasserin  |4 aut 
700 1 |a Ney, Hermann  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 6 vom: 01. Juni, Seite 1105-17  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:6  |g day:01  |g month:06  |g pages:1105-17 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.218  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 6  |b 01  |c 06  |h 1105-17