A performance evaluation of three membrane bioreactor systems : aerobic, anaerobic, and attached-growth
Water sustainability is essential for meeting human needs for drinking water and sanitation in both developing and developed countries. Reuse, decentralization, and low energy consumption are key objectives to achieve sustainability in wastewater treatment. Consideration of these objectives has led...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 63(2011), 12 vom: 06., Seite 2999-3005 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Comparative Study Journal Article Research Support, U.S. Gov't, Non-P.H.S. Membranes, Artificial Sewage |
Zusammenfassung: | Water sustainability is essential for meeting human needs for drinking water and sanitation in both developing and developed countries. Reuse, decentralization, and low energy consumption are key objectives to achieve sustainability in wastewater treatment. Consideration of these objectives has led to the development of new and tailored technologies in order to balance societal needs with the protection of natural systems. Membrane bioreactors (MBRs) are one such technology. In this investigation, a comparison of MBR performance is presented. Laboratory-scale submerged aerobic MBR (AMBR), anaerobic MBR (AnMBR), and attached-growth aerobic MBR (AtMBR) systems were evaluated for treating domestic wastewater under the same operating conditions. Long-term chemical oxygen demand (COD) and total organic carbon (TOC) monitoring showed greater than 80% removal in the three systems. The AnMBR system required three months of acclimation prior to steady operation, compared to one month for the aerobic systems. The AnMBR system exhibited a constant mixed liquor suspended solids concentration at an infinite solids retention time (i.e. no solids wasting), while the aerobic MBR systems produced approximately 0.25 g of biomass per gram of COD removed. This suggests a more economical solids management associated with the AnMBR system. Critical flux experiments were performed to evaluate fouling potential of the MBR systems. Results showed similar critical flux values between the AMBR and the AnMBR systems, while the AtMBR system showed relatively higher critical flux value. This result suggests a positive role of the attached-growth media in controlling membrane fouling in MBR systems |
---|---|
Beschreibung: | Date Completed 21.11.2011 Date Revised 18.09.2019 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |