An effective method for accurate prediction of the first hyperpolarizability of alkalides

Copyright © 2011 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 33(2012), 2 vom: 15. Jan., Seite 231-6
1. Verfasser: Wang, Jia-Nan (VerfasserIn)
Weitere Verfasser: Xu, Hong-Liang, Sun, Shi-Ling, Gao, Ting, Li, Hong-Zhi, Li, Hui, Su, Zhong-Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Metals, Alkali
LEADER 01000naa a22002652 4500
001 NLM212676121
003 DE-627
005 20231224020015.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21969  |2 doi 
028 5 2 |a pubmed24n0709.xml 
035 |a (DE-627)NLM212676121 
035 |a (NLM)22045548 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jia-Nan  |e verfasserin  |4 aut 
245 1 3 |a An effective method for accurate prediction of the first hyperpolarizability of alkalides 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.07.2012 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2011 Wiley Periodicals, Inc. 
520 |a The proper theoretical calculation method for nonlinear optical (NLO) properties is a key factor to design the excellent NLO materials. Yet it is a difficult task to obatin the accurate NLO property of large scale molecule. In present work, an effective intelligent computing method, as called extreme learning machine-neural network (ELM-NN), is proposed to predict accurately the first hyperpolarizability (β(0)) of alkalides from low-accuracy first hyperpolarizability. Compared with neural network (NN) and genetic algorithm neural network (GANN), the root-mean-square deviations of the predicted values obtained by ELM-NN, GANN, and NN with their MP2 counterpart are 0.02, 0.08, and 0.17 a.u., respectively. It suggests that the predicted values obtained by ELM-NN are more accurate than those calculated by NN and GANN methods. Another excellent point of ELM-NN is the ability to obtain the high accuracy level calculated values with less computing cost. Experimental results show that the computing time of MP2 is 2.4-4 times of the computing time of ELM-NN. Thus, the proposed method is a potentially powerful tool in computational chemistry, and it may predict β(0) of the large scale molecules, which is difficult to obtain by high-accuracy theoretical method due to dramatic increasing computational cost 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Metals, Alkali  |2 NLM 
700 1 |a Xu, Hong-Liang  |e verfasserin  |4 aut 
700 1 |a Sun, Shi-Ling  |e verfasserin  |4 aut 
700 1 |a Gao, Ting  |e verfasserin  |4 aut 
700 1 |a Li, Hong-Zhi  |e verfasserin  |4 aut 
700 1 |a Li, Hui  |e verfasserin  |4 aut 
700 1 |a Su, Zhong-Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 33(2012), 2 vom: 15. Jan., Seite 231-6  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:33  |g year:2012  |g number:2  |g day:15  |g month:01  |g pages:231-6 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21969  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2012  |e 2  |b 15  |c 01  |h 231-6