DICON : interactive visual analysis of multidimensional clusters

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 17(2011), 12 vom: 01. Dez., Seite 2581-90
1. Verfasser: Cao, Nan (VerfasserIn)
Weitere Verfasser: Gotz, David, Sun, Jimeng, Qu, Huamin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM212568213
003 DE-627
005 20231224015804.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2011.188  |2 doi 
028 5 2 |a pubmed24n0708.xml 
035 |a (DE-627)NLM212568213 
035 |a (NLM)22034380 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cao, Nan  |e verfasserin  |4 aut 
245 1 0 |a DICON  |b interactive visual analysis of multidimensional clusters 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.02.2012 
500 |a Date Revised 24.04.2012 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2011 IEEE 
520 |a Clustering as a fundamental data analysis technique has been widely used in many analytic applications. However, it is often difficult for users to understand and evaluate multidimensional clustering results, especially the quality of clusters and their semantics. For large and complex data, high-level statistical information about the clusters is often needed for users to evaluate cluster quality while a detailed display of multidimensional attributes of the data is necessary to understand the meaning of clusters. In this paper, we introduce DICON, an icon-based cluster visualization that embeds statistical information into a multi-attribute display to facilitate cluster interpretation, evaluation, and comparison. We design a treemap-like icon to represent a multidimensional cluster, and the quality of the cluster can be conveniently evaluated with the embedded statistical information. We further develop a novel layout algorithm which can generate similar icons for similar clusters, making comparisons of clusters easier. User interaction and clutter reduction are integrated into the system to help users more effectively analyze and refine clustering results for large datasets. We demonstrate the power of DICON through a user study and a case study in the healthcare domain. Our evaluation shows the benefits of the technique, especially in support of complex multidimensional cluster analysis 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gotz, David  |e verfasserin  |4 aut 
700 1 |a Sun, Jimeng  |e verfasserin  |4 aut 
700 1 |a Qu, Huamin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 17(2011), 12 vom: 01. Dez., Seite 2581-90  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:17  |g year:2011  |g number:12  |g day:01  |g month:12  |g pages:2581-90 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2011.188  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2011  |e 12  |b 01  |c 12  |h 2581-90