iView : a feature clustering framework for suggesting informative views in volume visualization

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 17(2011), 12 vom: 01. Dez., Seite 1959-68
1. Verfasser: Zheng, Ziyi (VerfasserIn)
Weitere Verfasser: Ahmed, Nafees, Mueller, Klaus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM212567543
003 DE-627
005 20250213083356.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2011.218  |2 doi 
028 5 2 |a pubmed25n0708.xml 
035 |a (DE-627)NLM212567543 
035 |a (NLM)22034313 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Ziyi  |e verfasserin  |4 aut 
245 1 0 |a iView  |b a feature clustering framework for suggesting informative views in volume visualization 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.02.2012 
500 |a Date Revised 24.04.2012 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2011 IEEE 
520 |a The unguided visual exploration of volumetric data can be both a challenging and a time-consuming undertaking. Identifying a set of favorable vantage points at which to start exploratory expeditions can greatly reduce this effort and can also ensure that no important structures are being missed. Recent research efforts have focused on entropy-based viewpoint selection criteria that depend on scalar values describing the structures of interest. In contrast, we propose a viewpoint suggestion pipeline that is based on feature-clustering in high-dimensional space. We use gradient/normal variation as a metric to identify interesting local events and then cluster these via k-means to detect important salient composite features. Next, we compute the maximum possible exposure of these composite feature for different viewpoints and calculate a 2D entropy map parameterized in longitude and latitude to point out promising view orientations. Superimposed onto an interactive track-ball interface, users can then directly use this entropy map to quickly navigate to potentially interesting viewpoints where visibility-based transfer functions can be employed to generate volume renderings that minimize occlusions. To give full exploration freedom to the user, the entropy map is updated on the fly whenever a view has been selected, pointing to new and promising but so far unseen view directions. Alternatively, our system can also use a set-cover optimization algorithm to provide a minimal set of views needed to observe all features. The views so generated could then be saved into a list for further inspection or into a gallery for a summary presentation 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Ahmed, Nafees  |e verfasserin  |4 aut 
700 1 |a Mueller, Klaus  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 17(2011), 12 vom: 01. Dez., Seite 1959-68  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:17  |g year:2011  |g number:12  |g day:01  |g month:12  |g pages:1959-68 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2011.218  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2011  |e 12  |b 01  |c 12  |h 1959-68