Saliency-assisted navigation of very large landscape images

© 2010 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 17(2011), 12 vom: 01. Dez., Seite 1737-46
1. Verfasser: Ip, Cheuk Yiu (VerfasserIn)
Weitere Verfasser: Varshney, Amitabh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM212567292
003 DE-627
005 20231224015803.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2011.231  |2 doi 
028 5 2 |a pubmed24n0708.xml 
035 |a (DE-627)NLM212567292 
035 |a (NLM)22034290 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ip, Cheuk Yiu  |e verfasserin  |4 aut 
245 1 0 |a Saliency-assisted navigation of very large landscape images 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.02.2012 
500 |a Date Revised 24.04.2012 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2010 IEEE 
520 |a The field of visualization has addressed navigation of very large datasets, usually meshes and volumes. Significantly less attention has been devoted to the issues surrounding navigation of very large images. In the last few years the explosive growth in the resolution of camera sensors and robotic image acquisition techniques has widened the gap between the display and image resolutions to three orders of magnitude or more. This paper presents the first steps towards navigation of very large images, particularly landscape images, from an interactive visualization perspective. The grand challenge in navigation of very large images is identifying regions of potential interest. In this paper we outline a three-step approach. In the first step we use multi-scale saliency to narrow down the potential areas of interest. In the second step we outline a method based on statistical signatures to further cull out regions of high conformity. In the final step we allow a user to interactively identify the exceptional regions of high interest that merit further attention. We show that our approach of progressive elicitation is fast and allows rapid identification of regions of interest. Unlike previous work in this area, our approach is scalable and computationally reasonable on very large images. We validate the results of our approach by comparing them to user-tagged regions of interest on several very large landscape images from the Internet 
650 4 |a Journal Article 
700 1 |a Varshney, Amitabh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 17(2011), 12 vom: 01. Dez., Seite 1737-46  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:17  |g year:2011  |g number:12  |g day:01  |g month:12  |g pages:1737-46 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2011.231  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2011  |e 12  |b 01  |c 12  |h 1737-46