Super-resolution without dense flow

Super-resolution is a widely applied technique that improves the resolution of input images by software methods. Most conventional reconstruction-based super-resolution algorithms assume accurate dense optical flow fields between the input frames, and their performance degrades rapidly when the moti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 4 vom: 20. Apr., Seite 1782-95
1. Verfasser: Su, Heng (VerfasserIn)
Weitere Verfasser: Wu, Ying, Zhou, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM21250150X
003 DE-627
005 20250213082418.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2173204  |2 doi 
028 5 2 |a pubmed25n0708.xml 
035 |a (DE-627)NLM21250150X 
035 |a (NLM)22027381 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Heng  |e verfasserin  |4 aut 
245 1 0 |a Super-resolution without dense flow 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2012 
500 |a Date Revised 22.03.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Super-resolution is a widely applied technique that improves the resolution of input images by software methods. Most conventional reconstruction-based super-resolution algorithms assume accurate dense optical flow fields between the input frames, and their performance degrades rapidly when the motion estimation result is not accurate enough. However, optical flow estimation is usually difficult, particularly when complicated motion is presented in real-world videos. In this paper, we explore a new way to solve this problem by using sparse feature point correspondences between the input images. The feature point correspondences, which are obtained by matching a set of feature points, are usually precise and much more robust than dense optical flow fields. This is because the feature points represent well-selected significant locations in the image, and performing matching on the feature point set is usually very accurate. In order to utilize the sparse correspondences in conventional super-resolution, we extract an adaptive support region with a reliable local flow field from each corresponding feature point pair. The normalized prior is also proposed to increase the visual consistency of the reconstructed result. Extensive experiments on real data were carried out, and results show that the proposed algorithm produces high-resolution images with better quality, particularly in the presence of large-scale or complicated motion fields 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wu, Ying  |e verfasserin  |4 aut 
700 1 |a Zhou, Jie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 4 vom: 20. Apr., Seite 1782-95  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:21  |g year:2012  |g number:4  |g day:20  |g month:04  |g pages:1782-95 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2173204  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 4  |b 20  |c 04  |h 1782-95