Robust dense registration of partial nonrigid shapes

This paper presents a complete and robust solution for dense registration of partial nonrigid shapes. Its novel contributions are founded upon the newly proposed heat kernel coordinates (HKCs) that can accurately position points on the shape, and the priority-vicinity search that ensures geometric c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 18(2012), 8 vom: 01. Aug., Seite 1268-80
1. Verfasser: Hou, Tingbo (VerfasserIn)
Weitere Verfasser: Qin, Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM212485709
003 DE-627
005 20231224015628.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0708.xml 
035 |a (DE-627)NLM212485709 
035 |a (NLM)22025752 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hou, Tingbo  |e verfasserin  |4 aut 
245 1 0 |a Robust dense registration of partial nonrigid shapes 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2012 
500 |a Date Revised 01.10.2012 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a complete and robust solution for dense registration of partial nonrigid shapes. Its novel contributions are founded upon the newly proposed heat kernel coordinates (HKCs) that can accurately position points on the shape, and the priority-vicinity search that ensures geometric compatibility during the registration. HKCs index points by computing heat kernels from multiple sources, and their magnitudes serve as priorities of queuing points in registration. We start with shape features as the sources of heat kernels via feature detection and matching. Following the priority order of HKCs, the dense registration is progressively propagated from feature sources to all points. Our method has a superior indexing ability that can produce dense correspondences with fewer flips. The diffusion nature of HKCs, which can be interpreted as a random walk on a manifold, makes our method robust to noise and small holes avoiding surface surgery and repair. Our method searches correspondence only in a small vicinity of registered points, which significantly improves the time performance. Through comprehensive experiments, our new method has demonstrated its technical soundness and robustness by generating highly compatible dense correspondences 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Qin, Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 18(2012), 8 vom: 01. Aug., Seite 1268-80  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:18  |g year:2012  |g number:8  |g day:01  |g month:08  |g pages:1268-80 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 18  |j 2012  |e 8  |b 01  |c 08  |h 1268-80