Patch-based near-optimal image denoising

In this paper, we propose a denoising method motivated by our previous analysis of the performance bounds for image denoising. Insights from that study are used here to derive a high-performance practical denoising algorithm. We propose a patch-based Wiener filter that exploits patch redundancy for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 4 vom: 07. Apr., Seite 1635-49
1. Verfasser: Chatterjee, Priyam (VerfasserIn)
Weitere Verfasser: Milanfar, Peyman
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:In this paper, we propose a denoising method motivated by our previous analysis of the performance bounds for image denoising. Insights from that study are used here to derive a high-performance practical denoising algorithm. We propose a patch-based Wiener filter that exploits patch redundancy for image denoising. Our framework uses both geometrically and photometrically similar patches to estimate the different filter parameters. We describe how these parameters can be accurately estimated directly from the input noisy image. Our denoising approach, designed for near-optimal performance (in the mean-squared error sense), has a sound statistical foundation that is analyzed in detail. The performance of our approach is experimentally verified on a variety of images and noise levels. The results presented here demonstrate that our proposed method is on par or exceeding the current state of the art, both visually and quantitatively
Beschreibung:Date Completed 18.07.2012
Date Revised 22.03.2012
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2011.2172799