Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis
© 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1990. - 193(2012), 2 vom: 14. Jan., Seite 432-44 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Membrane Transport Proteins Plant Proteins RNA, Messenger Recombinant Fusion Proteins Green Fluorescent Proteins 147336-22-9 Urea 8W8T17847W mehr... |
Zusammenfassung: | © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust. • Despite the great agricultural and ecological importance of efficient use of urea-containing nitrogen fertilizers by crops, molecular and physiological identities of urea transport in higher plants have been investigated only in Arabidopsis. • We performed short-time urea-influx assays which have identified a low-affinity and high-affinity (K(m) of 7.55 μM) transport system for urea-uptake by rice roots (Oryza sativa). • A high-affinity urea transporter OsDUR3 from rice was functionally characterized here for the first time among crops. OsDUR3 encodes an integral membrane-protein with 721 amino acid residues and 15 predicted transmembrane domains. Heterologous expression demonstrated that OsDUR3 restored yeast dur3-mutant growth on urea and facilitated urea import with a K(m) of c. 10 μM in Xenopus oocytes. • Quantitative reverse-transcription polymerase chain reaction (qPCR) analysis revealed upregulation of OsDUR3 in rice roots under nitrogen-deficiency and urea-resupply after nitrogen-starvation. Importantly, overexpression of OsDUR3 complemented the Arabidopsis atdur3-1 mutant, improving growth on low urea and increasing root urea-uptake markedly. Together with its plasma membrane localization detected by green fluorescent protein (GFP)-tagging and with findings that disruption of OsDUR3 by T-DNA reduces rice growth on urea and urea uptake, we suggest that OsDUR3 is an active urea transporter that plays a significant role in effective urea acquisition and utilisation in rice |
---|---|
Beschreibung: | Date Completed 02.05.2012 Date Revised 13.12.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/j.1469-8137.2011.03929.x |