Structure formation in metal complex/polymer hybrid nanomaterials prepared by miniemulsion

Polymer/complex hybrid nanostructures were prepared using a variety of hydrophobic metal β-diketonato complexes. The mechanism of structure formation was investigated by electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS) in the liquid phase. Structure formatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 21 vom: 01. Nov., Seite 12859-68
1. Verfasser: Hauser, Christoph P (VerfasserIn)
Weitere Verfasser: Jagielski, Nicole, Heller, Jeannine, Hinderberger, Dariush, Spiess, Hans W, Lieberwirth, Ingo, Weiss, Clemens K, Landfester, Katharina
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Polymer/complex hybrid nanostructures were prepared using a variety of hydrophobic metal β-diketonato complexes. The mechanism of structure formation was investigated by electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS) in the liquid phase. Structure formation is attributed to an interaction between free coordination sites of metal β-diketonato complexes and coordinating anionic surfactants. Lamellar structures are already present in the miniemulsion. By subsequent polymerization the lamellae can be embedded in a great variety of different polymeric matrices. The morphology of the lamellar structures, as elucidated by transmission electron microscopy (TEM), can be controlled by the choice of anionic surfactant. Using sodium alkylsulfates and sodium dodecylphosphate, "nano-onions" are formed, while sodium carboxylates lead to "kebab-like" structures. The composition of the hybrid nanostructures can be described as bilayer lamellae, embedded in a polymeric matrix. The metal complexes are separated by surfactant molecules which are arranged tail-to-tail; by increasing the carbon chain length of the surfactant the layer distance of the structured nanomaterial can be adjusted between 2 and 5 nm
Beschreibung:Date Completed 16.02.2012
Date Revised 25.10.2011
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la2028109