Simulation and optimization of an experimental membrane wastewater treatment plant using computational intelligence methods
The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challengi...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 63(2011), 10 vom: 07., Seite 2255-60 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article |
Zusammenfassung: | The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization |
---|---|
Beschreibung: | Date Completed 07.11.2011 Date Revised 18.09.2019 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |