|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM212027166 |
003 |
DE-627 |
005 |
20250213071120.0 |
007 |
tu |
008 |
231224s2011 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0707.xml
|
035 |
|
|
|a (DE-627)NLM212027166
|
035 |
|
|
|a (NLM)21977633
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lu, Hui
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Pilot scale evaluation of SANI process for sludge minimization and greenhouse gas reduction in saline sewage treatment
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.11.2011
|
500 |
|
|
|a Date Revised 10.12.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This study reports on a pilot trial of the SANI process (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process) in Hong Kong. A pilot-scale SANI plant treating saline sewage at 10 m3/day was scaled-up from a lab-scale system treating synthetic saline sewage. The plant consisted of a sulfate reduction up-flow sludge bed (SRUSB), an anoxic bioreactor (BAR1) for autotrophic denitrification utilizing dissolved sulfide produced by the SRUSB and an aerobic bioreactor (BAR2) for nitrification. The SANI pilot plant was successfully operated for 225 days and achieved average COD, TSS, TN removal of 87, 87, and 57%, respectively. The ratio of MLVSS to MLSS in the SRUSB was stable at 0.7 and the average sludge volume index (SVI) was constantly below 110 ml/g. No sludge was purposely withdrawn from the plant during 225-day plant operation. This was attributed to a very low observed sludge yield (0.02 kgVSS/kgCOD removed) of the SRUSB reactor. DNA extraction, PCA amplification results revealed that no methanogens were detected in the SRUSB. SANI can reduce 90% sludge production, 35% energy and 36% GHG compared to conventional biological nutrient removal (CBNR) process
|
650 |
|
4 |
|a Evaluation Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Sewage
|2 NLM
|
650 |
|
7 |
|a Sulfates
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a DNA
|2 NLM
|
650 |
|
7 |
|a 9007-49-2
|2 NLM
|
700 |
1 |
|
|a Wu, Di
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Daniel T W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, G H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a van Loosdrecht, Mark C M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ekama, G
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 63(2011), 10 vom: 07., Seite 2149-54
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:63
|g year:2011
|g number:10
|g day:07
|g pages:2149-54
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 63
|j 2011
|e 10
|b 07
|h 2149-54
|