Spatially resolved sources of dark current from TiO2 nanoparticle electrodes

The properties of TiO(2) and polyphenyl oxide (PPO) blocking layers were compared using a highly positive redox shuttle in dye-sensitized solar cells. The dark current versus applied potential curve was found to be composed of two separate current features. Cyclic voltammetric and impedance measurem...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 27(2011), 21 vom: 01. Nov., Seite 13361-6
1. Verfasser: Ondersma, Jesse W (VerfasserIn)
Weitere Verfasser: Hamann, Thomas W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The properties of TiO(2) and polyphenyl oxide (PPO) blocking layers were compared using a highly positive redox shuttle in dye-sensitized solar cells. The dark current versus applied potential curve was found to be composed of two separate current features. Cyclic voltammetric and impedance measurements were performed to identify the source of the two features. The first feature results from electron transfer from the TiO(2) blocking layer and the first layer of the TiO(2) nanoparticle film contacting the substrate. The second onset of dark current results from the transport resistance in the nanoparticle film decreasing, thus allowing electron transfer to occur throughout the film. It is further demonstrated that PPO prevents back electron transfer from the conductive substrate to the redox shuttle across the entire potential range studied; however, the TiO(2) blocking layer is active and participates in electron transfer at rates similar to those of the TiO(2) nanoparticle film
Beschreibung:Date Completed 16.02.2012
Date Revised 25.10.2011
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la202068q