Incorporation dynamics of molecular guests into two-dimensional supramolecular host networks at the liquid-solid interface

The objective of this work is to study both the dynamics and mechanisms of guest incorporation into the pores of 2D supramolecular host networks at the liquid-solid interface. This was accomplished by adding molecular guests to prefabricated self-assembled porous monolayers and the simultaneous acqu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 22 vom: 15. Nov., Seite 13563-71
1. Verfasser: Eder, Georg (VerfasserIn)
Weitere Verfasser: Kloft, Stephan, Martsinovich, Natalia, Mahata, Kingsuk, Schmittel, Michael, Heckl, Wolfgang M, Lackinger, Markus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The objective of this work is to study both the dynamics and mechanisms of guest incorporation into the pores of 2D supramolecular host networks at the liquid-solid interface. This was accomplished by adding molecular guests to prefabricated self-assembled porous monolayers and the simultaneous acquisition of scanning tunneling microscopy (STM) topographs. The incorporation of the same guest molecule (coronene) into two different host networks was compared, where the pores of the networks either featured a perfect geometric match with the guest (for trimesic acid host networks) or were substantially larger than the guest species (for benzenetribenzoic acid host networks). Even the moderate temporal resolution of standard STM experiments in combination with a novel injection system was sufficient to reveal clear differences in the incorporation dynamics in the two different host networks. Further experiments were aimed at identifying a possible solvent influence. The interpretation of the results is aided by molecular mechanics (MM) and molecular dynamics (MD) simulations
Beschreibung:Date Completed 06.03.2012
Date Revised 08.11.2011
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la203054k