Multilinear supervised neighborhood embedding of a local descriptor tensor for scene/object recognition

In this paper, we propose to represent an image as a local descriptor tensor and use a multilinear supervised neighborhood embedding (MSNE) for discriminant feature extraction, which is able to be used for subject or scene recognition. The contributions of this paper include: 1) a novel feature extr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 3 vom: 15. März, Seite 1314-26
1. Verfasser: Han, Xian-Hua (VerfasserIn)
Weitere Verfasser: Chen, Yen-Wei, Ruan, Xiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM211656356
003 DE-627
005 20231224014012.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2168417  |2 doi 
028 5 2 |a pubmed24n0705.xml 
035 |a (DE-627)NLM211656356 
035 |a (NLM)21937347 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Xian-Hua  |e verfasserin  |4 aut 
245 1 0 |a Multilinear supervised neighborhood embedding of a local descriptor tensor for scene/object recognition 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2012 
500 |a Date Revised 20.02.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose to represent an image as a local descriptor tensor and use a multilinear supervised neighborhood embedding (MSNE) for discriminant feature extraction, which is able to be used for subject or scene recognition. The contributions of this paper include: 1) a novel feature extraction approach denoted as the histogram of orientation weighted with a normalized gradient (NHOG) for local region representation, which is robust to large illumination variation in an image; 2) an image representation framework denoted as the local descriptor tensor, which can effectively combine a moderate amount of local features together for image representation and be more efficient than the popular existing bag-of-feature model; and 3) an MSNE analysis algorithm, which can directly deal with the local descriptor tensor for extracting discriminant and compact features and, at the same time, preserve neighborhood structure in tensor-feature space for subject/scene recognition. We demonstrate the performance advantages of our proposed approach over existing techniques on different types of benchmark database such as a scene data set (i.e., OT8), face data sets (i.e., YALE and PIE), and view-based object data sets (COIL-100 and ETH-80) 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Chen, Yen-Wei  |e verfasserin  |4 aut 
700 1 |a Ruan, Xiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 3 vom: 15. März, Seite 1314-26  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:3  |g day:15  |g month:03  |g pages:1314-26 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2168417  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 3  |b 15  |c 03  |h 1314-26