Improving protein structural class prediction using novel combined sequence information and predicted secondary structural features

Copyright © 2011 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 32(2011), 16 vom: 05. Dez., Seite 3393-8
1. Verfasser: Dai, Qi (VerfasserIn)
Weitere Verfasser: Wu, Li, Li, Lihua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Proteins
LEADER 01000naa a22002652 4500
001 NLM211643092
003 DE-627
005 20231224013953.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21918  |2 doi 
028 5 2 |a pubmed24n0705.xml 
035 |a (DE-627)NLM211643092 
035 |a (NLM)21935966 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dai, Qi  |e verfasserin  |4 aut 
245 1 0 |a Improving protein structural class prediction using novel combined sequence information and predicted secondary structural features 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.01.2012 
500 |a Date Revised 14.10.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2011 Wiley Periodicals, Inc. 
520 |a Protein structural class prediction solely from protein sequences is a challenging problem in bioinformatics. Numerous efficient methods have been proposed for protein structural class prediction, but challenges remain. Using novel combined sequence information coupled with predicted secondary structural features (PSSF), we proposed a novel scheme to improve prediction of protein structural classes. Given an amino acid sequence, we first transformed it into a reduced amino acid sequence and calculated its word frequencies and word position features to combine novel sequence information. Then we added the PSSF to the combine sequence information to predict protein structural classes. The proposed method was tested on four benchmark datasets in low homology and achieved the overall prediction accuracies of 83.1%, 87.0%, 94.5%, and 85.2%, respectively. The comparison with existing methods demonstrates that the overall improvements range from 2.3% to 27.5%, which indicates that the proposed method is more efficient, especially for low-homology amino acid sequences 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Proteins  |2 NLM 
700 1 |a Wu, Li  |e verfasserin  |4 aut 
700 1 |a Li, Lihua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 32(2011), 16 vom: 05. Dez., Seite 3393-8  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:32  |g year:2011  |g number:16  |g day:05  |g month:12  |g pages:3393-8 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21918  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2011  |e 16  |b 05  |c 12  |h 3393-8