|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM211612758 |
003 |
DE-627 |
005 |
20231224013916.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la2024617
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0705.xml
|
035 |
|
|
|a (DE-627)NLM211612758
|
035 |
|
|
|a (NLM)21932775
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Marshall, Nicholas
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Reductive electrografting of benzene (p-bisdiazonium hexafluorophosphate)
|b a simple and effective protocol for creating diazonium-functionalized thin films
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.02.2012
|
500 |
|
|
|a Date Revised 25.10.2011
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In this Article, we describe a protocol for surface functionalization of benzenediazonium hexafluorophosphate monolayers by in situ electrochemical reduction of bis(benzenediazonium) hexafluorophosphate. Due to the considerable difference in potential between the first and second reduction of this species, it is possible to form a high density of surface-bound diazonium groups by use of a mild potential which selectively reduces only one diazonium group per ring. The resulting diazonium-containing monolayer reacts readily with solutions of electron-rich aromatic compounds. The reaction with ferrocene produces a dense (2.7 × 10(-10) mol/cm(2)) ferrocene-containing monolayer through a Gomberg-Bachmann type arylation. The resulting ferrocene group exhibits relatively rapid electron transfer to the electrode due to the conjugated linker layer as measured by alternating current voltammetry (ACV) and cyclic voltammetry. Aromatic systems with π-donor substitutents (N,N-dimethylaniline, N,N,N',N'-tetramethyldiaminobenzophenone, and hydroquinone) react through an azo-coupling to form monolayers linked to the surface through an azobenzene moiety. The redox properties of these electron-rich species tethered to the surface were observed and quantified using cyclic voltammetry. This simple and versatile functionalization procedure has a wide variety of potential applications in surface science and materials research
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Locklin, Jason
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 27(2011), 21 vom: 01. Nov., Seite 13367-73
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2011
|g number:21
|g day:01
|g month:11
|g pages:13367-73
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la2024617
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2011
|e 21
|b 01
|c 11
|h 13367-73
|