Long-wavelength sensitization of TiO2 by ruthenium diimine compounds with low-lying π* orbitals

© 2011 American Chemical Society

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 23 vom: 06. Dez., Seite 14522-31
1. Verfasser: Johansson, Patrik G (VerfasserIn)
Weitere Verfasser: Rowley, John G, Taheri, Atefeh, Meyer, Gerald J, Singh, Surya Prakash, Islam, Ashraful, Han, Liyuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Imines Organometallic Compounds titanium dioxide 15FIX9V2JP Ruthenium 7UI0TKC3U5 Titanium D1JT611TNE
Beschreibung
Zusammenfassung:© 2011 American Chemical Society
The role of low-lying π* orbitals in dye-sensitized solar cells based on mesoporous thin films of anatase TiO(2) nanocrystallites remains unknown. Herein we report three ruthenium compounds, cis-Ru(dcbq)(2)(NCS)(2), cis-Ru(dcbq)(bpy)(NCS)(2), and cis-Ru(dcb)(bq)(NCS)(2), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO(2)H)(2)-2,2'-bipyridine, bq is 2,2'-biquinoline, and dcbq is 4,4'-(CO(2)H)(2)-2,2'-biquinoline, that were synthesized, characterized, and contrasted with the well-known N3 compound (i.e., cis-Ru(dcb)(2)(NCS)(2)) in dye-sensitized solar cells. These compounds maintain the same cis-Ru(NCS)(2) core with a systematic variation in the energy of the π* orbitals of the diimine ligand: bpy > dcb > bq > dcbq. The lowered π* orbitals resulted in enhanced red absorption relative to N3. With HCl pretreated TiO(2) in regenerative solar cells, sensitization from 400 to 900 nm was realized with cis-Ru(dcb)(bq)(NCS)(2) and global power conversion efficiencies as high as 6.5% were achieved under 1 sun of AM 1.5 irradiation. The energy conversion efficiency was found to be acutely sensitive to the presence of p-tert-butylpyridine (TBP) in a 0.5 M LiI/0.05 M I(2) acetonitrile electrolyte. Nanosecond transient absorption studies revealed that the addition of TBP decreased the excited-state injection yield for the compounds with biquinoline ligands. Spectro-electrochemical studies showed that the HCl pretreatment lowered the effective density of TiO(2) acceptor states and confirmed that the presence of TBP raised them toward the vacuum level. There was no spectroscopic data to support the hypothesis that the π* levels of the diimine ligand mediate back-electron transfer to the oxidized dye or the redox mediator was found
Beschreibung:Date Completed 27.03.2012
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la202887h