Running Max/Min Filters using 1+o(1) Comparisons per Sample

A running max (or min) filter asks for the maximum or (minimum) elements within a fixed-length sliding window. The previous best deterministic algorithm (developed by Gil and Kimmel, and refined by Coltuc) can compute the 1D max filter using 1.5+o(1) comparisons per sample in the worst case. The bes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 12 vom: 30. Dez., Seite 2544-2548
1. Verfasser: Yuan, Hao (VerfasserIn)
Weitere Verfasser: Atallah, Mikhail J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM211082996
003 DE-627
005 20250213045311.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.183  |2 doi 
028 5 2 |a pubmed25n0703.xml 
035 |a (DE-627)NLM211082996 
035 |a (NLM)21876226 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Hao  |e verfasserin  |4 aut 
245 1 0 |a Running Max/Min Filters using 1+o(1) Comparisons per Sample 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A running max (or min) filter asks for the maximum or (minimum) elements within a fixed-length sliding window. The previous best deterministic algorithm (developed by Gil and Kimmel, and refined by Coltuc) can compute the 1D max filter using 1.5+o(1) comparisons per sample in the worst case. The best known algorithm for independent and identically distributed input uses 1.25+o(1) expected comparisons per sample(by Gil and Kimmel). In this work, we show that the number of comparisons can be reduced to 1+o(1) comparisons per sample in the worst case. As a consequence of the new max/min filters, the opening (or closing) filter can also be computed using 1+o(1) comparisons per sample in the worst case, where the previous best work requires 1.5+o(1) comparisons per sample (by Gil and Kimmel); and computing the max and min filters simultaneously can be done in 2+o(1) comparisons per sample in the worst case, where the previous best work (by Lemire) requires 3 comparisons per sample. Our improvements over the previous work are asymptotic, that is, the number of comparisons is reduced only when the window size is large 
650 4 |a Journal Article 
700 1 |a Atallah, Mikhail J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 12 vom: 30. Dez., Seite 2544-2548  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:12  |g day:30  |g month:12  |g pages:2544-2548 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.183  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 12  |b 30  |c 12  |h 2544-2548