Bootstrap techniques for error estimation

The design of a pattern recognition system requires careful attention to error estimation. The error rate is the most important descriptor of a classifier's performance. The commonly used estimates of error rate are based on the holdout method, the resubstitution method, and the leave-one-out m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 9(1987), 5 vom: 01. Mai, Seite 628-33
1. Verfasser: Jain, A K (VerfasserIn)
Weitere Verfasser: Dubes, R C, Chen, C C
Format: Aufsatz
Sprache:English
Veröffentlicht: 1987
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM211016799
003 DE-627
005 20231224012722.0
007 tu
008 231224s1987 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0703.xml 
035 |a (DE-627)NLM211016799 
035 |a (NLM)21869421 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jain, A K  |e verfasserin  |4 aut 
245 1 0 |a Bootstrap techniques for error estimation 
264 1 |c 1987 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 12.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The design of a pattern recognition system requires careful attention to error estimation. The error rate is the most important descriptor of a classifier's performance. The commonly used estimates of error rate are based on the holdout method, the resubstitution method, and the leave-one-out method. All suffer either from large bias or large variance and their sample distributions are not known. Bootstrapping refers to a class of procedures that resample given data by computer. It permits determining the statistical properties of an estimator when very little is known about the underlying distribution and no additional samples are available. Since its publication in the last decade, the bootstrap technique has been successfully applied to many statistical estimations and inference problems. However, it has not been exploited in the design of pattern recognition systems. We report results on the application of several bootstrap techniques in estimating the error rate of 1-NN and quadratic classifiers. Our experiments show that, in most cases, the confidence interval of a bootstrap estimator of classification error is smaller than that of the leave-one-out estimator. The error of 1-NN, quadratic, and Fisher classifiers are estimated for several real data sets 
650 4 |a Journal Article 
700 1 |a Dubes, R C  |e verfasserin  |4 aut 
700 1 |a Chen, C C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 9(1987), 5 vom: 01. Mai, Seite 628-33  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:9  |g year:1987  |g number:5  |g day:01  |g month:05  |g pages:628-33 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 1987  |e 5  |b 01  |c 05  |h 628-33