On Extensions to Fisher's Linear Discriminant Function

This correspondence describes extensions to Fisher's linear discriminant function which allow both differences in class means and covariances to be systematically included in a process for feature reduction. It is shown how the Fukunaga-Koontz transform can be combined with Fisher's method...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 9(1987), 2 vom: 01. Feb., Seite 321-5
1. Verfasser: Longstaff, I D (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 1987
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This correspondence describes extensions to Fisher's linear discriminant function which allow both differences in class means and covariances to be systematically included in a process for feature reduction. It is shown how the Fukunaga-Koontz transform can be combined with Fisher's method to allow a reduction of feature space from many dimensions to two. Performance is seen to be superior in general to the Foley-Sammon method. The technique is developed to show how a new radius vector (or pair of radius vectors) can be combined with Fisher's vector to produce a classifier with even more power of discrimination. Illustrations of the technique show that good discrimination can be obtained even if there is considerable overlap of classes in any one projection
Beschreibung:Date Completed 02.10.2012
Date Revised 12.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539