|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM21101642X |
003 |
DE-627 |
005 |
20231224012722.0 |
007 |
tu |
008 |
231224s1987 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0703.xml
|
035 |
|
|
|a (DE-627)NLM21101642X
|
035 |
|
|
|a (NLM)21869384
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Haimi-Cohen, R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Gradient-type algorithms for partial singular value decomposition
|
264 |
|
1 |
|c 1987
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.10.2012
|
500 |
|
|
|a Date Revised 12.11.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a It is often desirable to calculate only a few terms of the SVD expansion of a matrix, corresponding to the largest or smallest singular values. Two algorithms, based on gradient and conjugate gradient search, are proposed for this purpose. SVD is computed term by term in a decreasing or increasing order of singular values. The algorithms are simple to implement and are especially advantageous with large matrices
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Cohen, A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 9(1987), 1 vom: 01. Jan., Seite 137-42
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:9
|g year:1987
|g number:1
|g day:01
|g month:01
|g pages:137-42
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 9
|j 1987
|e 1
|b 01
|c 01
|h 137-42
|