Computation of surface orientation and structure of objects using grid coding

In this correspondence, algorithms are introduced to infer surface orientation and structure of visible object surfaces using grid coding. We adopt the active lighting technique to spatially ``encode'' the scene for analysis. The observed objects, which can have surfaces of arbitrary shape...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 9(1987), 1 vom: 01. Jan., Seite 129-37
1. Verfasser: Wang, Y F (VerfasserIn)
Weitere Verfasser: Mitiche, A, Aggarwal, J K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1987
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this correspondence, algorithms are introduced to infer surface orientation and structure of visible object surfaces using grid coding. We adopt the active lighting technique to spatially ``encode'' the scene for analysis. The observed objects, which can have surfaces of arbitrary shape, are assumed to rest on a plane (base plane) in a scene which is ``encoded'' with light cast through a grid plane. Two orthogonal grid patterns are used, where each pattern is obtained with a set of equally spaced stripes marked on a glass pane. The scene is observed through a camera and the object surface orientation is determined using the projected patterns on the object surface. If the surfaces under consideration obey certain smoothness constraints, a dense orientation map can be obtained through proper interpolation. The surface structure can then be recovered given this dense orientation map. Both planar and curved surfaces can be handled in a uniform manner. The algorithms we propose yield reasonably accurate results and are relatively tolerant to noise, especially when compared to shape-from-shading techniques. In contrast to other grid coding techniques reported which match the grid junctions for depth reconstruction under the stereopsis principle, our techniques use the direction of the projected stripes to infer local surface orientation and do not require any correspondence relationship between either the grid lines or the grid junctions to be specified. The algorithm has the ability to register images and can therefore be embedded in a system which integrates knowledge from multiple views
Beschreibung:Date Completed 02.10.2012
Date Revised 12.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539